Knowledge center

Publications

Innovation that is built on 25 years of know-how and experience brings a lot of knowledge. The TIM Company is dedicated to contribute to a healthier world. We can only achieve this by working together and share our knowledge to help you find out how TIM can help you. Find out more about how we can help you with our publications.

General publications and technical aspects (incl. reviews)

Abrahamse, E., Minekus, M., van Aken, G.A., van de Heijning, B., Knol, J., Bartke, N., Oozeer, R., van der Beek, E.M. and  Ludwig, T. (2012). Development of the digestive system –  Experimental challenges and approaches of infant lipid digestion. Food Digestion 3 (1-3): 63-77.

Aguirre, M., Venema, K. (2017). Challenges in simulating the human gut for understanding the role of the microbiota in obesity. Beneficial Microbes 8 (1): 31-53.

Alminger, M., Aura,A.-M., Bohn, T., Dufour, C., El, S.N., Gomes, A., Karakaya, S., Martinez-Cuesta, M.C., McDougall, G.J., Requena, T., santos, C.N. (2014). In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Compreh. Rev. Food Sci. Food Safety 13: 413-436.

Bellmann, S., Lelieveld, J., Gorissen, T., Minekus, M., Havenaar, R. (2016). Development of an advanced in vitro model and its evaluation versus human gastric physiology. Food Res. Internat. 88: 191-198.

Culen, M., Rezacova, A., Jampilek, J., Dohnal, J. (2013).Designing a dynamic dissolution method: A review of instrumental options and corresponding physiology of stomach and small Intestine. J. Pharmaceutical Sci. 102 (9): 2995-3017. doi: 10.1002/jps.23494.

De Jong, L. (2005). Assessing Bioavailability. A new integrated methodology that predict long-term effects of foods in only a short time. World Food Ingredients Oct./Nov. pp  110-112.

Dupont, D., Alric, M., Blanquet-Diot, S., Bornhorst, G., Cueva, C., Deglaire, A., Denis, S., Ferrua, M., Havenaar, R., Lelieveld, J., Mackie, A.R., Marzorati, M., Menard, O., Minekus, M., Miralles, B., Recio, I., Van den Abbeele, P. (2018). Can dynamic in vitro digestion systems mimic the physiological reality? Crit. Rev. Food Sci. Nutr. Jan 13: 1-17. doi: 10.1080/10408398.2017.1421900.

Freidig, A. and Verwei, M. (2004). Integration of in vitro data in kinetic models for pharmaceuticals and nutrients. Netherlands Centre Altern. Animal Use Newsletter 16: 1-3.

Guerra, A., Etienne-Mesmin, L., Livrelli, V., Denis, S., Blanquet-Diot, S., Alric, M. (2012). Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol. 30 (11): 591-600.

Havenaar, R., Veenstra, J., Minekus, M., Marteau, P. (1993). Unieke methode voor bestudering fysiologische aspecten van voeding. Voeding 54 (6): 7-11.

Havenaar, R. and Minekus, M. (1996). Simulated assimilation. Dairy Industries International 61 (9): 17‑23.

Kostewicz ES, Abrahamsson B, Brewster M, Brouwers, J., Butler, J., Carlert, S., Dickinson, P.A., Dressman, J., Holm, R., Klein, S., Mann, J., McAllister, M., Minekus, M., Muenster, U., Müllertz, A., Verwei, M., Vertzoni, M., Weitschies, W., Augustijns, P. (2014). In vitro models for the prediction of in vivo performance of oral dosage forms. Eur. J. Pharm. Sci. 57 (1): 324-366.

Li, Z., He, X. (2015). Physiologically based in vitro models to predict the oral dissolution and absorption of a solid drug delivery system. Curr. Drug Metabol. 16: 777-806.

Lvova, L., Denis, S., Barra, A., Mielle, P., Salles, C., Vergoignan, C., Di Natale, C., Paolesse, R., Temple-Boyer, P. and Feron, G. (2012). Salt release monitoring with specific sensors in ‘in vitro’ oral and digestive environments from soft cheeses. Talanta 97: 171-180.

Marze, S. (2017). Bioavailability of nutrients and micronutrients: Advances in modeling and in vitro approaches. Annu. Rev. Sci. Techn. 8: 35-55. dio: 10.1146/annurev-food-030216-030055.

Minekus, M. and Havenaar, R. (1998). Reactor system. European Patent No. 0642382. European Patent Bulletin 98/07, Art. 97(4) and (5) EPC, dated 11.02.98.

Minekus, M. and Havenaar, R. (1996). In vitro model of an in vivo digestive tract. United States Patent; nr. 5,525,305, dated June 11, 1996.

Minekus, M., Marteau, P., Havenaar, R., Huis in ‘t Veld, J.H.J. (1995). A multi compartmental dynamic computer-controlled model simulating the stomach and small intestine. Alternatives to Laboratory Animals (ATLA) 23: 197-209.

Minekus, M., Smeets-Peeters, M.J.E., Bernalier, A., Marol-Bonnin, S., Havenaar, R., Marteau, P., Alric, M., Fonty, G., and Huis in ‘t Veld, J.H.J. (1999). A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl. Microb. Biotechn. 53: 108-114.

Nguyen, T.T.P., Bhandari, B., Cichero, J., Prakash, S. (2015). A comprehensive review on in vitro digestion of infant formula. Food Res. Internat.

Smeets-Peeters, M.J.E., Watson, T., Minekus, M., Havenaar, R. (1998). A review of the physiology of the canine digestive tract related to the development of in vitro systems. Nutrition Research Reviews 11: 45-69.

Smeets-Peeters, M.J.E., Minekus, M., Havenaar, R., Schaafsma, G., Verstegen, M.W.A. (1999). Description of a dynamic in vitro model of the dog gastrointestinal tract and an evaluation of various transit times for protein and calcium. ATLA 27: 935-949.

Ting, Y., Zhao, Q., Xia, C., Huang, Q. (2015). Using in vitro and in vivo models to evaluate the oral bioavailability of neutraceuticals. J. Agr. Food Chem. 63: 1332-1338.

Venema, K. (2014). In vitro assessment of the bioactivity of food oligosaccharides. In: Food Oligosaccharides: Production, Analysis and Bioactivity. Eds.: F.J. Moreno & M. Luz Sanz. John Wiley & Sons, Ltd.

Venema, K., Havenaar, R., Minekus, M. (2009). Improving in vitro simulation of the stomach and intestines. In: Designing Functional Foods and Controlling Food Structure Breakdown and Nutrition Absorption, Elsevier. pp 314-339.

Verhoeckx, K. (2015). The impact of food bioactives on health: in vitro and ex-vivo models. Ed. Verhoeckx, K., Cotter, P., Lopez-Exposito, I. et al. Springer Open.

Westerhout, J., van de Steeg, E., Grossouw, D., Zeijdner, E.E., Krul, C.A.M., Verwei, M., Wortelboer, H.M. (2014). A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur. J. Pharmac. Sci. 63: 167–177.

Williams, C.F., Walton, G.E., Jiang, L., Plummer, S., Garaiova, I., Gibson, G.R. (2015). Comparative analysis of intestinal tract models. Ann. Rev. Food Sci. Technol. 6: 329-350.

Yoo, J.Y., Chen, X.D. (2006). GIT Physicochemical modeling – A critical review. Internat. J. Food Engineering, 2 (4), article 4.

Zhu Y. (2011) Response to the article ‘‘In vitro human digestion models for food application’’. Food Chemistry, 128: 820-821.

Nutritional studies (human nutrition)

Food Digestion (general)

Dupont, D., Alric, M., Blanquet-Diot, S., Bornhorst, G., Cueva, C., Deglaire, A., Denis, S., Ferrua, M., Havenaar, R., Lelieveld, J., Mackie, A.R., Marzorati, M., Menard, O., Minekus, M., Miralles, B., Recio, I., Van den Abbeele, P. (2018). Can dynamic in vitro digestion systems mimic the physiological reality? Crit. Rev. Food Sci. Nutr. 1549-7852 (on line).

Johansson, D.P., Vázquez Gutiérrez J.L., Landberg, R., Alminger, M., Langton, M. (2017). Impact of food processing on rye product properties and their in vitro digestion. Eur. J. Nutr. Open Access doi: 10.1007/s00394-017-1450-y.

Keller, D., Van Dinter, R., Cash, H., Farmer, S., Venema, K. (2017). Bacillus coagulans GBI-30, 6086 increases plant protein digestion in a dynamic, computer-controlled in vitro model of the small intestine (TIM-1). Beneficial Microbes 8 (3): 491-496.

Lefebvre, D.E., Venema, K.,, Gombau, L., Valerio Jr, L.G., Raju, J., Genevieve S. Bondy, G.S., Bouwmeester, H., Singh, R.P., Clippinger, A.J., Collnot, E.-M., Mehta, R., Stone, V. (2014). Utility of models of the gastrointestinal tract for assessment of the digestion and absorption of engineered nanomaterials released from food matrices. Nanotoxicology (early on line 1-20.

doi: 10.3109/17435390.2014.948091.

Schnorr, .S.L., Crittenden, A.N., Venema, K., Marlowe, F., Henry, A.G. 2015. Assessing digestibility of Hadza tubers using a dynamic in-vitro model. American Journal of Physical Anthropology 158(3): 371-85.

Proteins

Benmoussa, A., Lee, C.C., Laffont, B., Savard, P., Laugier, J., Boilard, E., Gilbert, C., Fliss, I., Provost, P. (2016) Commercial dairy cow milk microRNAs resist digestion under simulated gastrointestinal tract conditions. J Nutr. 146 (11): 2206-2215.

Denis, S., Sayd, T., Georges, A., Chambon, C., Chalancon, S., Santé-Lhoutellier, V., Blanquet-Diot, S. (2016). Digestion of cooked meat proteins is slightly affected by age as assessed using the dynamic gastrointestinal TIM model and mass spectrometry. Food Function 7 (6): 2682-2691.

Framroze, B., Savard, P., Gagnon, D., Richard, V., Gauthier, S.F. (2014). Comparison of nitrogen bioaccessibility from salmon and whey protein hydrolysates using a human gastrointestinal model (TIM-1). Func. Foods Health Dis. 4 (5): 222-231.

Havenaar, R., Maathuis, A., de Jong, A., Mancinelli, D., Berger, A., Bellmann, S. (2016). Herring roe protein had a high digestible indispensable amino acid score (DIAAS) using a dynamic in vitro gastrointestinal model. Nutr. Res. 36: 798-807.

Havenaar, R., de Jong, A., Koenen, M.J., van Bilsen, J., Janssen, A.M., Labij, E., Westerbeek, H.J.M. (2013). Digestibility of transglutaminase cross-linked caseinate versus native caseinate in an in vitro multi-compartmental model simulating young child and adult gastrointestinal conditions. J. Agric. Food Chem. 61 (31): 7636-7644.

Keller, D., Van Dinter, R., Cash, H., Farmer, S., Venema, K. (2017). Bacillus coagulans GBI-30, 6086 increases plant protein digestion in a dynamic, computer-controlled in vitro model of the small intestine (TIM-1). Beneficial Microbes 8 (3): 491-496.

Kleinnijenhuis, A. J., van Holthoon, F. L., Maathuis, A. J., Vanhoecke, B., Prawitt, J., Wauquier, F., & Wittrant, Y. (2019). Non-targeted and targeted analysis of collagen hydrolysates during the course of digestion and absorption. Analytical and Bioanalytical Chemistry, 1-10.

Maathuis, A., Havenaar, R., He, T., Bellmann, S. (2017). Protein digestion and quality of goat and cow milk infant formula and human milk under simulated infant conditions. J. Pediatric Gastroenterol. Nutr. 65 (6): 661-666. Open Access. doi:10.1097/MPG.0000000000001740.

Mitea, C., Havenaar, R., Drijfhout, J.W., Edens, L., Dekking, L. and Koning, F. (2008). Efficient degradation of gluten by prolyl endoprotease in gastrointestinal model: Implications for coeliac disease. Gut 57: 25-32.

Nabil, S., Gauthier, S.F., Drouin, R., Poubelle, P.E., and Pouliot, Y. (2011). In vitro digestion of proteins and growth factors in a bovine whey protein extract as determined using a computer-controlled dynamic gastrointestinal system (TIM-1). Food Dig. 2: 13-22.

Schaafsma, G. (2005). The Protein Digestibility-Corrected Amino Acid Score (PDCAAS). A concept for describing protein quality in foods and food ingredients: A critical review. J. AOAC Internat. 88 (3): 988-994.

Villemejane, C., Denis, S., Marsset-Baglieri, A., Alric, M., Aymard, P., Michon, C. (2016). In vitro digestion of short-dough biscuits enriched in proteins and/or fibres, using a multi-compartmental and dynamic system (2): Protein and starch hydrolyses. Food Chem. 190: 164-172.

Fats

Bellmann, S. und Havenaar, R. (2007). Die Fettbindenden Eigenschaften von Ballaststoffen in vivo und in vitro. Ernährungs Umschau 8/07: 450-455.

Bel-Rhlid, R., Pagé-Zoerkler, N., Fumeaux, R., Ho-Dac, T., Chuat, J-Y., Sauvageat, J.L., Raab, T. (2012). Hydrolysis of chicoric and caftaric acids with esterases and Lactobacillus johnsonii in vitro and in a gastrointestinal model. J. Agric. Food Chem. 60: 9236-9241.

Bel-Rhlid, R., Crespy, V., Pagé-Zoerkler, N., Nagy, K., Raab, T. and Hansen, C-E. (2009). Hydrolysis of rosmaric acid from Rosemary extract with esterases and Lactobacillus johnsonii in vitro and in a gastrointestinal model. J. Agric. Food Chem. 57: 7700-7705.

Dasilva, G., Boller, M., Medina, I., Storch, J. (2018). Relative levels of dietary EPA and DHA impact gastric oxidation and essential fatty acid uptake. Nutr. Biochem. doi:10.1016/j.jnutbio.2017.11.007.

Domoto, N., Koenen, M.E., Havenaar, R., Mikajiri, A., Chu, B.-S., (2013). The bioaccessibility of eicosapentaenoic acid was higher from phospholipid food products than from mono- and triacylglycerol food products in a dynamic gastrointestinal model. Food Sci. Nutr. 1 (6): 409-415.

Frank, N., Dubois, M., Scholz, G., Seefelder, W., Chuat, J-Y., Schilter, B. (2013). Application of gastrointestinal modelling to the study of the digestion and transformation of dietary glycidyl esters. Food Add. Containm. Part A, 30 (1): 69-79. doi: 10.1080/19440049.2012.732245.

Fondaco, D., AlHasawi, F., Lan, Y., Ben-Elazar, S., Connolly, K., Rogers, M.A. (2015). Biophysical aspects of lipid digestion in human breast milk and Similac infant formulas. Food Biophysics 10: 282-291.

Gervais, R., Gagnon, F., Kheadr, E.E.,Van Calsteren, R-M., Farnworth, E.R., Fliss, I., and Chouinard, P.Y. (2009). Bioaccessibility of fatty acids from conjugated linoleic acid-enriched milk and milk emulsions studied in a dynamic in vitro gastrointestinal model. Internat. Dairy J. 19: 574-581.

Helbig, A., Silletti, E., van Aken, G.A., Oosterveld, A., Minekus, M., Hamer, R.J., Gruppen, H. (2013). Lipid digestion of protein stabilized emulsions investigated in a dynamic in vitro gastro-intestinal model system. Food Dig. 4: 58–68. doi: 10.1007/s13228-012-0029-6.

Huang, J., Chen, P. X., Rogers, M. A., & Wettig, S. D. (2019). Investigating the Phospholipid Effect on the Bioaccessibility of Rosmarinic Acid-Phospholipid Complex through a Dynamic Gastrointestinal in Vitro Model. Pharmaceutics, 11(4), 156.

Larsson, K., Harrysson, H., Havenaar, R., Alminger, M., Undeland, I. (2016). Formation of malon-dialdehyde (MDA), 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE) in fish and fish oil during dynamic gastrointestinal in vitro digestion. Food Function 7: 1176-1187. .

Larsson, K., Tullberg, C.,  Alminger, M., Havenaar, R., Undeland, I. (2016). Malondialdehyde and 4-hydroxy-2-hexenal are formed during dynamic gastrointestinal in vitro digestion of cod liver oils. Food Function 7: 3458-3467.

Maestre, R., Douglass, J.D., Kodukula, S., Medina, I, Storch, J. (2013). Alterations in the intestinal assimilation of oxidized PUFAs are ameriorated by a polyphenol-rich grape seed extract in an in vitro model and Caco-2 cells. J. Nutr. 143: 295-301.

Minekus, M., Jelier, M., Xiao, J.-Z., Kondo S., Iwatsuki, K., Kokubo, S., Bos, M, Dunnewind, B. and Havenaar, R. (2005). Effect of partially hydrolyzed guar gum (PHGG) on the bioaccessibility of fat and cholesterol. Biosci. Biotechnol. Biochem. 69 (5): 932-938.

Oosterveld, A., Minekus, M., Bomhof, E., Zoet, F.D., van Aken, G.A. (2016). Effects of inhomogeneity on triglyceride digestion of emulsions using an in vitro digestion model (tiny TIM). Food Function 7: 2979-2995.

Reis, P.M., Raab, T.W., Chuant, J.Y., Leser, M., Miller, R., Watzke, H., and Holmberg, K. (2008). Influence of surfactants on lipase fat digestion in a model gastrointestinal system. Food Biophysics 3: 370-381.

Speranza, A., Corradini, M.G., Hartman, T.G., Ribnicky, D., Oren, A., Rogers, M.A. (2013). Influence of emulsifier structure on lipid bioaccessibility in oil/water nanoemulsions. J. Agr. Food Chem. 61 (26): 6505-6515. doi: 10.1021/jf401548r.

Thilakarathna, S.H., Rogers, M., Lan, Y., Huynh, S., Marangoni, A.G., Robinsona L.E., Wright A.J. (2016). Investigations of in vitro bioaccessibility from interesterified stearic and oleic acid-rich blends. Food Function 7: 1932-1940. doi: 10.1039/c5Fo01272d.

Carbohydrates  (digestion and fermentation)

AlHasawi, F., Fondaco, D., Ben-Elazar, K., Ben-Elazar, S., Fan, Y.Y., Corradini, M.G., Ludescher, R.D., Bolster, D., Carder, G., Chu, Y., Chung, Y, Kasturi, P., Johnson J., Rogers, M. (2017). In vitro measuremts of luminal viscosity and glucose/maltose bioaccessibility for oat bran, instant oats, and steel cut oats. Food Hydrocoloids 70: 293-303. doi.org/10.1016/j.foodhyd.2017.04.0150268-005X/.

Bellmann, S., Minekus, M., Sanders, P., Bosgra, S., Havenaar, R. (2017). Human glycemic response curves after intake of carbohydrate foods are accurately predicted by combining in vitro gastrointestinal digestion with in silico kinetic modeling. Clin. Nutr. Experimental 17: 8-22.  Open Access. doi.org/10.1016/j.yclnex.2017.10.003.

Bothe M.K., Maathuis, A.J.H., Bellmann, S., van der Vossen, J.M.B.M., Berressem, D., Koehler, A., Schwejda-Guettes, S., Gaigg, B., Kuchinka-Koch, A., Stover, J.F. (2017). Dose-dependent prebiotic effect of lactulose in a computer-controlled in vitro model of the human large intestine. Nutrients 9: 767-781. doi:10.3390.nu9070767.

Bothe, M. K., Maathuis, A. J. H., Lange, K., Koenen, M. E., van der Vossen, J. M. B. M., Bellmann, S., Schwejda-Guettes., S., Koehler, A., Kuchinka-Koch., A, Stover, J.F. (2018). Lactulose Crystals and Liquid Both Show A Dose-Dependent Prebiotic Effect in a Computer-Controlled In Vitro Model of the Human Proximal Colon. J Food Tech Food Chem 1: 103 Abstract RESEARCH ARTICLE Open Access, 1(1).

Faessler, C, Arrigoni, E., Venema, K., Hafner, V., Brouns, F. and Amado, R. (2006). Digestibility of resistant starch containing preparation using two in vitro models. Eur. J. Nutr. 45 (8): 445-453.

Faessler, C, Arrigoni, E., Venema, K., Brouns, F. and Amado, R. (2006). In vitro fermentability of differently digested resistant starch preparations. Mol. Nutr. Food Res. 50: 1220-1228.

Koenen, M.E., Cruz Rubio, J.M., Mueller, M., Venema, K. (2016). The effect of agave fructan products on the activity and composition of the microbiota determined in a dynamic in vitro model of the human proximal large intestine. J. Funct. Foods 22: 201-210.

Lafond, M., Bouza, B., Eyrichine, S., Rouffineau, F., Saulnier, L., Giardina, T., Bonnin, E., Preynat, A. (2015). In vitro gastrointestinal digestion study of two wheat cultivars and evaluation of xylanase supplementation. J An. Sci. biotechnol. 6 (1), Art. #5 Open Access.

Larsson Alminger, M., Eklund-Jonsson, C., Kidman, S., Langton, M. (2012). Starch microstructure and starch hydrolysis in barley and oat tempe during in vitro digestion. Food Dig. 3: 53-62.

Maathuis, A.J.H., van den Heuvel, E.G.,  Schoterman, M.H.C., Venema, K. 2012. Galacto-Oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a 13C-labeling technique. J. Nutrition 142 (7): 1205-1212.

Maathuis, A., Hoffman, A., Evans, A., Sanders, L., Venema,  K. (2009). The Effect of the undigested fraction of maize products on the activity and composition of the microbiota determined in a dynamic in vitro model of the human proximal large intestine. J. American College of Nutrition, Vol. 28 (6): 657–666.

Nalin, T. Venema, K., Weinstein, D.A., de Souza, C.F.M., Perry, I.D.S., van Wandelen, M.T.R., van Rijn, M., Smit, G.P.A., Schwartz, I.V.D., Derks, T.G.J. (2015). In vitro digestion of starches in a dynamic gastrointestinal model: an innovative study to optimize dietary management of patients with hepatic glycogen storage diseases. J. Inherit. Metab. Dis. 38: 529-536. Erratum: J. Inherit. Metab. Dis, 38 (5): 987.

Ramasamy, U.S., Venema, K., Schols, H.A., Gruppen, H. (2014). Effect of soluble and insoluble fibers within the in vitro fermentation of chicory root pulp by human gut bacteria. J. Agr. Food Chem. 62: 6794-6802.

Ramasamy, U.S., Venema, K., Gruppen, H., Schols, H.A. (2014). The fate of chicory root pulp polysaccharides during fermentation in the TNO in vitro model of the colon (TIM-2). Bioact. Carb. Dietary Fibre 4: 48-57.

Reimer, R.A.,  Maathuis, A.J.H., Venema, K., Lyon, M.R., Gahler, R.J., Wood, S. (2014). Effect of the novel polysaccharide PolyGlycopleX® on short-chain fatty acid production in a computer-controlled in vitro model of the human large intestine. Nutrients 6: 1115-1127. doi: 10-3390/nu6031115.

Teixeira, C., Nyman, M., Andersson, R., Alminger, M. (2017). Application of a dynamic gastrointestinal in vitro model combined with a rat model to predict the digestive fate of barley dietary fibre and evaluate potential impact on hindgut fermentation. Bioactive Carbohydr Dietary Fibre 9: 7-13.

Van Nuenen, H.M.C., Meyer, P.D., Venema, K. (2003). The effect of various inulins and Clostridium difficile on the metabolic activity of the human colonic microbiota in vitro. Microbial Ecology in Health and Disease 15 (2-3): 137-144.

Venema, K., Van Nuenen, H.M.C., Van den Heuvel, E.G., Pool, W., Van der Vossen, J.M.B.M. (2003).The effect of lactulose on the composition of the intestinal microbiota and short-chain fatty acid production in human volunteers and a computer-controlled model of the proximal large intestine. Microbial Ecology in Health and Disease, 15 (2-3): 94-105.

Villemejane, C., Denis, S., Marsset-Baglieri, A., Alric, M., Aymard, P., Michon, C. (2016). In vitro digestion of short-dough biscuits enriched in proteins and/or fibres, using a multi-compartmental and dynamic system (2): Protein and starch hydrolyses. Food Chem. 190: 164-172.

Villemejane, C., Wahl, R., Aymard, P., Denis, S., Michon, C. (2015). In vitro digestion of short-dough biscuits enriched in proteins and/or fibres, using a multi-compartmental and dynamic system (1): Viscosity measurement and prediction. Food Chem. 182: 55-63.

Vitamins

Arkbåge, K., Verwei, M., Havenaar, R., Witthöft, C. (2003). Folic acid and (6S)-5-methyltetrahydrofolate bioaccessibility decreases after addition of folate-binding protein to yogurt as studied in a dynamic in vitro gastrointestinal model. J. Nutr. 133: 3678-3683.

Blanquet-Diot, S., Soufi, M., Rambeau, M., Rock, E., and Alric, M. (2009). Digestive stability of xanthophylls exceeds that of carotenes as studied in a dynamic in vitro gastrointestinal system, J. Nutr. 139 (5): 876-883.

Déat, E., Blanquet-Diot, S., Jarrige, J-F., Denis, S., Beyssac, E. and  Alric, M. (2009). Combining the dynamic TNO-gastrointestinal tract system with a Caco-2 cell culture model: Application to the assessment of lycopene and r-tocopherol bioavailability from a whole food. J. Agricult. Food Chem. 57: 11314-11320.  (Correction of Fig. 4:  JAFC p 11314).

Etcheverry, P., Grusak, M.A., Fleige, L.E. (2012).  Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B6, B12, D, and E. Frontiers Physiology p1-22. doi: 10.3389/fphys.2012.00317.

Finglas, P.M., de Meer, K., Molloy, A., Verhoef, P., Pietrzik, K., Powers, H.J., van der Straeten, D., Jägerstad, M., Varela-Moreiras, G., van Vliet, T., Havenaar, R., Buttriss, J., Wright, A.J.A. (2007). Research goals for folate and related B vitamin in Europe. Eur. J. Clin. Nutr. 60 (2): 287-294.

Galán, I., García, M.L., Selgas, M.D., Havenaar, R. (2014).  Effect of E-beam treatment on the bioaccessibility of folic acid incorporated to ready to eat meat products. Food Sci. Techn. 59: 547-552.

Ohrvik, V., Witthöft, C., (2008). Orange juice is a good folate source in respect to folate content and stability during storage and simulated digestion. Eur. J. Nutr. 47: 92-98.

Ohrvik, V., Ohrvik, H., Tallkvist, J., Witthöft, C. (2010). Folates in bread: retention during bread-making and in vitro bioaccessibility. Eur. J. Nutr. 49 (6): 365-372.

Nimalaratne, C., Savard, P., Gauthier, S.F., Schieber, A., Wu, J. (2015). Bioaccessibility and digestive stability of carotenoids in cooked eggs studied using a dynamic in vitro gastrointestinal model. J. Agr. Food Chem. 63 (11): 2956-2962.

Richelle, M., Sanchez, B., Tavazzi, I., Lambelet, P., Bortlik, K. and Williamson, G. (2010). Lycopene isomerisation takes place within enterocytes during absorption in human subjects. Br. J. Nutr. 103: 1800-1807.

Van Loo-Bouwman, C.A., Naber, T.H.J., Minekus, M., van Breemen, R.B., Hulshof, P.J.M., Schaafsma, G. (2014). Food matrix effects on bioaccessibility of β-carotene can be measured in an in vitro gastrointestinal model. J. Agric. Food Chem. 62 (4): 950-955.

Verwei, M., Freidig, A.P., Havenaar, R., Groten, J. P. (2006). Predicted serum folate concentrations based on in vitro studies and kinetic modeling are consistent with measured folate concentrations in humans. J. Nutr.  136 (12): 3074-3078.

Verwei, M., Arkbåge, K., Groten. J.P., Witthöft, C., Van den Berg, H. and Havenaar, R. (2005). The effect of folate binding proteins on bioavailability of folate from milk products. Trends Food Sci. Techn. 16: 307-310.

Verwei, M., Arkbåge, K., Mocking, H., Havenaar, R. and Groten, J. (2004). The binding of folic acid and 5-methyltetrahydrofolate to folate-binding proteins during gastric passage differs in a dynamic in vitro gastrointestinal model. J. Nutr. 134: 31-37.

Verwei, M., Arkbåge, K., Havenaar, R., Van den Berg, H., Witthöft, C. and Schaafsma, G. (2003). Folic acid and 5-Methyl-tetrahydrofolate in fortified milk are bioaccessible as determined in a dynamic in vitro gastrointestinal model. J. Nutr. 133: 2377-2383.

Minerals

Bellmann, S., Miyazaki, K., Chonan, O., Ishikawa, F., Havenaar, R. (2014). Fucoidan from Cladosiphon okamuranus Tokida added to food has no adverse effect on availability for absorption of divalent minerals in the dynamic multi-compartmental model of the upper gastrointestinal tract. Food Digestion 5 (1-3): 19-25.  doi: 10.1007/s13228-014-0036-x.

Eklund-Jonsson, C., Sandberg, A-S., Hulthen, L., Larsson-Alminger, M. (2008). Tempé fermentation of whole grain barley increased human iron absorption and in vitro iron availability. The Open Nutr. J. 2: 42-47.

Etcheverry, P., Grusak, M.A., Fleige, L.E. (2012).  Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B6, B12, D, and E. Frontiers Physiology p1-22. doi: 10.3389/fphys.2012.00317.

Haraldsson, A-K., Rimsten, L., Alminger, M., Andersson, R., Aman, P., and Sandberg, A-S. (2005). Digestion of barley malt porridges in a gastrointestinal model: Iron dialysability, iron uptake by Caco-2 cells and degradation of ß-glucan. J. Cereal Sci. 42: 243-254.

Kortman, G.A.M., Dutilh, B.E., Maathuis, A.J.H., Engelke, U.F., Boekhorst, J., Keegan, K.P., Nielsen, F.G.G.,  Betley, J., Weir, J.C., Kingsbury, Z., Kluijtmans, L.A.J., Swinkels, D.W., Venema, K., Tjalsma, H. (2016). Microbial metabolism shifts towards an adverse profile with supplementary iron in the TIM-2 in vitro model of the human colon. Frontiers Microbiol. 6, art. 1481.

doi: 10.3389/fmicb.2015.01481.

Larsson, M. Minekus, M. and Havenaar, R. (1997). Estimation of the bio-availability of iron and phosphorus in cereals using a dynamic in vitro gastrointestinal model. J. Sci. Food Agric. 73: 99-106.

Lvova, L., Denis, S., Barra, A., Mielle, P., Salles, C., Vergoignan, C., Di Natale, C., Paolesse, R., Temple-Boyer, P. and Feron, G. (2012). Salt release monitoring with specific sensors in ‘in vitro’ oral and digestive environments from soft cheeses. Talanta 97: 171-180.

Martin, A.H. and De Jong, G.A.H. (2012). Enhancing the in vitro Fe2+ bioaccessibility using ascorbate and cold-set whey protein gel particles. Dairy Sci. Technology 92 (2): 133-149.

Salovaara, S., Larsson-Alminger, M., Eklund-Jonsson, C., Andlid, T. and Sandberg, A.-S. (2003). Prolonged transit time through the stomach and small intestine improves iron dialyzability and uptake in vitro. J. Agric. Food Chem. 51: 5131-5136.

Antioxidants

Hemery, Y.M., Mateo Anson, N., Havenaar, R., Haenen, G.R.M.M., Noort, M.W.J. Rouau, X. (2010). Dry-fractionation of wheat bran increases the bioaccessibility of phenolic acids in breads made from processed bran fractions. Food Research International, 43 (5): 1429-1438.

Lafond, M., Bouza, B., Eyrichine, S., Bonnin, B., Crost, E.H., Geraert, P-A., Giardina, T., and Ajandouz E.H. (2011). An integrative in vitro approach to analyse digestion of wheat polysaccharides and the effect of enzyme supplementation. British J. Nutr. 106: 264–273.

Lila, M.A., Ribnicky, D.M., Rojo, L.E., Rojas-Silva, P., Oren, A., Havenaar, R., Janle, E.M., Raskin, I., Yousef, G.G., and Grace, M.H. (2012). Complementary approaches to gauge the bioavailability and distribution of ingested berry polyphenols. J. Agricultural Food Chem. 60: 5763-5771.

Lu, M., Ho, C-T., Huang, Q. (2017). Improving quercetin dissolution and bioaccessibility with reduced crystallite sizes through media milling technique. J. Func. Foods 37: 138-146. doi.org/10.1016/ j.jff.2017.07.047.

Maestre, R., Douglass, J.D., Kodukula, S., Medina, I, Storch, J. (2013). Alterations in the intestinal assimilation of oxidized PUFAs are ameriorated by a polyphenol-rich grape seed extract in an in vitro model and Caco-2 cells. J. Nutr. 143: 295-301.

Mateo Anson, N.; Havenaar, R.; Bast, A. and Haenen, G.R.M.M. (2010). Antioxidant and anti-inflammatory capacity of bioaccessible compounds from wheat fractions after gastrointestinal digestion. J. Cereal Sci. 51 (1): 110-114.

Mateo Anson, N., Van den Berg, R., Havenaar, R., Bast, A., Haenen, G. (2009). Bioavailability of ferulic acid is determined by its bioaccessibility. J. Cereal Sci. 49 (2): 295-300.

Mateo Anson, N, Selinheimo, E., Havenaar, R., Aura, A.M., Mattila, I., Lehtinen, P., Bast, A., Poutanen, K., Haenen, G.R.M.M. (2009). Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds. J. Agric. Food Chem. 57: 6148-6155.

Mateo Anson, N., Havenaar, R., Vaes, W., Coulier, L., Venema, K., Selinheimo, E., Bast, A., Haenen, G.R.M.M. (2011). Effect of bioprocessing of wheat bran in whole meal wheat breads on the colonic SCFA production in vitro and postprandial plasma concentrations in men. Food Chemistry 128: 404-409.

Animal feed & nutrition

Avantaggiato, G., Havenaar, R. and Visconti, A. (2007). Assessment of the muli-mycotoxin binding efficacy of a carbon/aluminosilicate based product in an in vitro gastrointestinal model. J. Agricul. Food Chem. 55: 4810-4819.

Avantaggiato, G., Havenaar, R. and Visconti, A. (2004). Evaluation of the intestinal absorption of deoxynivalenol and nivalenol by an in vitro gastrointestinal model, and the binding efficacy of activated carbon and other adsorbent materials. Food Chemical Tox. 42 (5): 817-824.

Avantaggiato, G., Havenaar, R. and Visconti, A. (2003). Assessing the zearalenone binding activity of adsorbent materials during passage through a dynamic gastrointestinal model. Food Chemical Tox. 41: 1283-1290.

González-Arias, C.A., Marín, S., Sanchis, V., Ramos, A.J. (2013). Mycotoxin bioaccessibility/ absorption assessment using in vitro digestion models: a review. World Mycotoxin J. 6 (2): 167-184.

Havenaar, R. (2002). GI Model. FIDO: An alternative to invasive animal research. Petfood Industry 44: 12-18.

Lankhorst, C., Tran, Q., Havenaar, R., Hendriks, W., van der Poel, A. (2007). The effect of extrusion on the nutritional value of canine diets as assessed by in vitro indicators. Animal Feed Sci. Techn. 138: 285–297.

Meunier, J.-P. , Cardot, J.M., Manzanilla, E.G., Wysshaar, M., and Alric, M. (2007). Use of spray-cooling technology for development of microencapsulated capsicum oleoresin for the growing pig as an alternative to in-feed antibiotics: A study of release using in vitro models J. Anim. Sci. 86: 1156-1163.

Meunier, JP, Manzanilla, EG, Anguita, M, Denis, S, Perez, JF, Gasa, J, Cardot, J-M,, Garcia, F, Moll, X, Alric, M.. (2008). Evaluation of a dynamic in vitro model to simulate the porcine ileal digestion of diets differing in carbohydrate composition  J. Anim Sci. 86: 1156-1163.

Minekus, M. (1996). In-vitro modelling moves closer to the real thing. Feed Mix 4: 36-38.

Schaafsma, G. (2005). The Protein Digestibility-Corrected Amino Acid Score (PDCAAS). A concept for describing protein quality in foods and food ingredients: A critical review. J. AOAC Internat. 88 (3): 988-994.

Smeets-Peeters, M.J.E., Minekus, M., Havenaar, R., Schaafsma, G., Verstegen, M.W.A. (1999). Description of a dynamic in vitro model of the dog gastrointestinal tract and an evaluation of various transit times for protein and calcium. ATLA 27: 935-949.

Probiotics & Microbiology studies (see also micro-ecology TIM-2 studies)

Arroyo-López, F.N., Blanquet-Diot, S, Denis, S., Thévenot, J., Chalancon, S., Alric, M., Rodríguez-Gómez, F., Romero-Gil, V., Jiménez-Díaz, R., Garrido-Fernández, A. (2014). Survival of pathogenic and lactobacilli species of fermented olives during simulated human digestion. Frontiers Microbiol. p1-9. doi 10.3389/micb.2014.00540.

Bel-Rhlid, R., Pagé-Zoerkler, N., Fumeaux, R., Ho-Dac, T., Chuat, J-Y., Sauvageat, J.L., Raab, T. (2012). Hydrolysis of chicoric and caftaric acids with esterases and Lactobacillus johnsonii in vitro and in a gastrointestinal model. J. Agric. Food Chem. 60: 9236-9241.

Bel-Rhlid, R., Crespy, V., Pagé-Zoerkler, N., Nagy, K., Raab, T. and Hansen, C-E. (2009). Hydrolysis of rosmaric acid from Rosemary extract with esterases and Lactobacillus johnsonii in vitro and in a gastrointestinal model. J. Agric. Food Chem. 57: 7700-7705.

Blanquet-Diot. S., Denis, S., Chalancon, S., Chaira, F., Cardot, J.-M., Alric, M. (2012). Use of artificial digestive systems to investigate the biopharmaceutical factors influencing the survival of probiotic yeast during gastrointestinal transit in humans. Pharm. Research 29: 1444–1453.

Cordonnier, C., Thévenot, J., Etienne-Mesmin, L., Denis, S., Alric, M., Livrelli, V., Blanquet-Diot, S. (2015). Dynamic in vitro models of the human gastrointestinal tract as relevant tools to assess the survival of probiotic strains and their interactions with gut microbiota. Microorganisms 3: 725-745.

Etienne-Mesmin, L., Livrelli, V., Privat, M., Denis,S., Cardot, J.M., Alric, M., Blanquet-Diot, S. (2011). Effect of a new probiotic Saccharomyces cerevisiae strain on survival of Escherichia coli O157:H7 in a dynamic gastrointestinal model. Applied and Environmental Microbiology 77: 1127-1131.

Fernandez, B., Hammami, R., Savard, P., Jean, J., Fliss, I. (2013). Pediococcus acidilactici UL5 and Lactococcus lactis ATCC 11454 are able to survive and express their bacteriocin genes under simulated gastrointestinal conditions. J. Appl. Microbiol. 116: 677-688.

Fujii, A., Crédoz, Y., Maathuis, A.J.H., Nishida, S. (2015). Different viability of probiotic strains accesible in Japanese dairy market demonstrated by in vitro methods. Milk Sci. 64 (2): 99-106.

Gagnon, M., Savard, P., Rivière, A., LaPointe, G., Roy, D. (2014). Bioaccessible antioxidants in milk fermented by Bifidobacterium longum subsp. longum strains. BioMed Res. Internat., ID 169381.

Gänzle, M.G., Hertel, C., Van der Vossen, J.M.B.M. and Hammes, W.P. (1999). Effect of bacteriocin-producing lactobacilli on the survival of Escherichia coli and Listeria in a dynamic model of the stomach and the small intestine. Int. J. Food Microbiology 48: 21-35.

Hanchi, H., Hammami, R., Kourda, R., Ben Hamida, J., Fliss, I. (2014). Bacteriocinogenic properties and in vitro probiotic potential of enterococci from Tunisian dairy products. Arch. Micriobiol. 196: 331-344.

Hatanaka, M., Nakamura, Y., Maathuis, A.J.H., Venema, K., Murota, I., Yamamoto, Y. (2012). Influence of Bacillus subtilis C-3102 on microbiota in a dynamic in vitro model of the gastrointestinal tract simulating human conditions. Beneficial Microbes 3 (3): 229-236.

Havenaar, R. (1999). The model selection tool.  Dairy Industries International, 64 (6): 33-36.

Jedidi, H., Champagne, C.P., Raymond, Y., Farnworth, E., van Calsteren, M-R., Chouinard, P.Y., Fliss, I., (2014). Effect of milk enriched with conjugated linoleic acid and digested in a simulator (TIM-1) on the viability of probiotic bacteria. Internat. Dairy J. 37: 20-25.

Keller, D., Van Dinter, R., Cash, H., Farmer, S., Venema, K. (2017). Bacillus coagulans GBI-30, 6086 increases plant protein digestion in a dynamic, computer-controlled in vitro model of the small intestine (TIM-1). Beneficial Microbes 8 (3): 491-496.

Keller, D., Verbruggen, S., Cash, H., Farmer, S., & Venema, K. (2019). Spores of Bacillus coagulans GBI-30, 6086 show high germination, survival and enzyme activity in a dynamic, computer-controlled in vitro model of the gastrointestinal tract. Beneficial microbes, 10(1), 77-87.

Khalf, M., Dabour, N., Kheadr, E. and Fliss, I. (2010). Viability of probiotic bacteria in maple sap products under storage and gastrointestinal conditions. Bioresource Technology 101: 7966–7972.

Kheadr, E., Zihler, A., Dabour, N., Lacroix, C., Le Blay, G. and Fliss, I. (2010). Study of the physicochemical and biological stability of pediocin PA-1 in the upper gastrointestinal tract conditions using a dynamic in vitro model.  J. Appl. Microbiol. 109: 54-64.

Kheadr, E.E., Dabour, N., Petit, G., Vuillemard, J-C. (2011). Probiotic-delivering capacity of dairy products: In vitro assessment using a gastro-intestinal dynamic model. Internat. J. Probiotics Prebiotics 6 (2): 73-80.

Larsen, N., de Souza, C. B., Krych, L., Kot, W., Leser, T. D., Sørensen, O. B., … & Jespersen, L. (2019). Effect of potato fiber on survival of Lactobacillus species at simulated gastric conditions and composition of the gut microbiota in vitro. Food Research International, 108644.

Maathuis, A., Keller, D. and Farmer, S. (2010). Survival and metabolitic activity of the GanedenBC30 strain of Bacillus coagulans in a dynamic in vitro model of the stomach and small intestine. Beneficial Microbes 1 (1): 31-36.

Makivuokko, H., Wacklin, P., Koenen, ME., Laamanen, K., Alakulppi, N., Venema, K. and Matto, J. 2012. Isolation of bifidobacteria for blood group secretor status targeted personalised nutrition. Microbial Ecology in Health & Disease 23: 28-34.

Marteau, P., Minekus, M., Havenaar, R. and Huis in ‘t Veld, J.H.J. (1997). Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: Validation and the effects of bile.  J. Dairy Sci. 80: 1031-1037.

Martinez, R.C.R., Aynaou, A-E., Albrecht, S., Schols, H.A., De Martinis, E.C.P., Zoetendal., E.G., Venema, K., Saad, S.M.I., Smidt, H. (2011). In vitro evaluation of gastrointestinal survival of Lactobacillus amylovorus DSM 16698 alone and in combination with galactooligosaccharides, milk and/or Bifidobacterium animalis subsp. lactis bb-12. Internat. J. Food Microbiol. 149: 152-158.

Miettinen, M., Alander, M., von Wright, A., Vuopio-Varkila, J., Marteau, P., Huis in‘t Veld, J. and Mattila-Sandholm, T. (1998). The survival of and cytokine induction by lactic acid bacteria after passage through a gastrointestinal model. Microbial Ecology Health Disease 10: 141-147.

Miszczycha, S.D., Thévenot, J., Denis, S., Callon, C., Livrelli, V., Alric, M., Montel, M-C., Blanquet-Diot, S., Thevenot-Sergentet, D. (2014). Survival of Escherichia coli O26:H11 exceeds that of Escherichia coli O157:H7 as assessed by simulated human digestion of contaminated raw milk cheeses. Internat. J. Food Microbiol. 172: 40-48.

Roussel, C., Cordonnier, C., Galia, W., Le Goff, O., Thévenot, J., Chalancon, S., Alric, M., Thevenot-Sergentet, D., Leriche, F., Van de Wiele, T., Livrelli, V., Blanquet-Diot, S. (2016) Increased EHEC survival and virulence gene expression indicate an enhanced pathogenicity upon simulated pediatric gastrointestinal conditions. Pediatric Res. 80 (5): 734-743.

Samtlebe, M., Denis, S., Chalancon S., Atamer Z., Wagner N., Neve H., Franz, C., Schmidt, H., Blanquet-Diot, S., Hinrichs, J. (2018). Bacteriophages as modulator for the human gut microbiota: Release from dairy food systems and survival in a dynamic human gastrointestinal model. Food Sci. Techn. 91: 235-241.

Uriot, O., Galia, W., Ablavi Awussi, A., Perrin, C., Denis, S., Chalancon, S., Lorson, E., Poirson, C., Junjua, M., Le Roux, Y., Alric, M., Dary, A., Blanquet-Diot, S., Roussel, Y. (2016). Use of dynamic gastro-intestinal model TIM to explore the survival of the yogurt bacterium Streptococcus thermophilus and the metabolic activities induced in the simulated human gut. Food Microbiology 53: 18-29.

Venema, K., Verhoeven, J., Verbruggen, S., Espinosa, L., & Courau, S. (2019). Probiotic survival during a multilayered tablet development as tested in a dynamic, computer‐controlled in vitro model of the stomach and small intestine (TIM‐1). Letters in applied microbiology.

Williams, G. A., Koenen, M. E., Havenaar, R., Wheeler, P., Gowtage, S., Lesellier, S., & Chambers, M. A. (2019). Survival of Mycobacterium bovis BCG oral vaccine during transit through a dynamic in vitro model simulating the upper gastrointestinal tract of badgers. PloS one, 14(4), e0214859.

Zhu, Y., Havenaar, R. and Venema, K. (2011) Response to: Pitino et al. (2010). Food Microbiology 27:1121-1127 “Survival of Lactobacillus rhamnosus strains in the upper gastrointestinal tract”. Food Microbiology, 28:1110.

Functional Ingredients, Phytochemicals & Biologicals

Benmoussa, A., Lee, C.C., Laffont, B., Savard, P., Laugier, J., Boilard, E., Gilbert, C., Fliss, I., Provost, P. (2016) Commercial dairy cow milk microRNAs resist digestion under simulated gastrointestinal tract conditions. J Nutr. 146 (11): 2206-2215.

Bothe M.K., Maathuis, A.J.H., Bellmann, S., van der Vossen, J.M.B.M., Berressem, D., Koehler, A., Schwejda-Guettes, S., Gaigg, B., Kuchinka-Koch, A., Stover, J.F. (2017). Dose-dependent prebiotic effect of lactulose in a computer-controlled in vitro model of the human large intestine. Nutrients 9: 767-781. doi:10.3390.nu9070767.

Bothe, M. K., Maathuis, A. J. H., Lange, K., Koenen, M. E., & van der Vossen, J. M. B. M. (2018). Lactulose Crystals and Liquid Both Show A Dose-Dependent Prebiotic Effect in a Computer-Controlled In Vitro Model of the Human Proximal Colon. J Food Tech Food Chem 1: 103 Abstract RESEARCH ARTICLE Open Access, 1(1).

Gagnon, M., Savard, P., Rivière, A., LaPointe, G., Roy, D. (2015). Bioaccessible antioxidants in milk fermented by Bifidobacterium longum subsp. longum strains. BioMed Res. Internat., ID 169381. http://dx.doi.org/10.1155/2015/169381.

Gao, K., Xu, A., Krul, C., Venema, K., Liu, Y., Niu, Y., Lu, J., Bensoussan, L., Seeram, N.P., Heber, D. and Henning, S.M. (2006). Of the major phenolic acids formed during human microbial fermentation of tea, citrus and soy flavonoids supplements, only 3,4-dihydroxyphenylacetic acid has antiproliferative activity. J. Nutr. 136: 52-57.

Krul, C., Humblot, C., Philippe, C., Vermeulen, M., Van Nuenen, M., Havenaar, R., Rabot, S. (2002). Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model. Carcinogenesis 23 (6): 1009-1016.

Krul, C.A.M., Luiten-Schuite, A., Tenfelde, A., Van Ommen, B., Verhagen, H. and Havenaar, R. (2001). Antimutagenic activity of green tea and black tea extracts studied in a dynamic in vitro gastrointestinal model. Mutation Research 474: 71-85.

Kong, H., Wang, M., Venema, K., Maathuis, A., van der Heijden, R., van der Greef, J., Xu, G. and Hankemeier, T. (2009). Bioconversion of red ginseng saponins in the gastro-intestinal tract in vitro model studied by high-performance liquid chromatography–high resolution Fourier transform ion cyclotron resonance mass spectrometry.  J. Chromatography A 1216: 2195–2203.

Kheadr, E., Zihler, A., Dabour, N., Lacroix, C., Le Blay, G. and Fliss, I. (2010). Study of the physicochemical and biological stability of pediocin PA-1 in the upper gastrointestinal tract conditions using a dynamic in vitro model.  J. Appl. Microbiol. 109: 54-64.

Lila, M.A., Ribnicky, D.M., Rojo, L.E., Rojas-Silva, P., Oren, A., Havenaar, R., Janle, E.M., Raskin, I., Yousef, G.G., and Grace, M.H. (2012). Complementary approaches to gauge the bioavailability and distribution of ingested berry polyphenols. J. Agricultural Food Chem. 60: 5763-5771.

Lu, M., Ho, C-T., Huang, Q. (2017). Improving quercetin dissolution and bioaccessibility with reduced crystallite sizes through media milling technique. J. Func. Foods 37: 138-146. doi.org/10.1016/ j.jff.2017.07.047.

Maestre, R., Douglass, J.D., Kodukula, S., Medina, I, Storch, J. (2013). Alterations in the intestinal assimilation of oxidized PUFAs are ameriorated by a polyphenol-rich grape seed extract in an in vitro model and Caco-2 cells. J. Nutr. 143: 295-301.

Mitea, C., Havenaar, R., Drijfhout, J.W., Edens, L., Dekking, L. and Koning, F. (2008). Efficient degradation of gluten by prolyl endoprotease in a gastrointestinal model: Implications for coeliac disease. Gut 57: 25-32.

Minekus, M., Jelier, M., Xiao, J.-Z., Kondo S., Iwatsuki, K., Kokubo, S., Bos, M, Dunnewind, B. and Havenaar, R. (2005). Effect of partially hydrolyzed guar gum (PHGG) on the bioaccessibility of fat and cholesterol. Biosci. Biotechnol. Biochem. 69 (5): 932-938.

Nabil, S., Gauthier, S.F., Drouin, R., Poubelle, P.E., and Pouliot, Y. (2011). In vitro digestion of proteins and growth factors in a bovine whey protein extract as determined using a computer-controlled dynamic gastrointestinal system (TIM-1). Food Dig. 2: 13-22.

Ribnicky, D.M., Roopchand, D.E., Poulev, A., Kuhn, P., Oren, A., Cefalu, W.T., Raskin, I. (2014). Artemisia dracunculus L. polyphenols complexed to soy protein show enhanced bioavailability and hypoglycemic activity in C57BL/6 mice. Nutrition 30: S4-S10.

Ribnicky, D.M., Roopchand, D.E., Oren, A., Grace, M., Poulev, A., Lila, M.A., Havenaar, R., Raskin, I. (2014). Effects of a high fat meal matrix and protein complexation 4 on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1). Food Chem. 142: 349-357.

Thörig, L., de Groot, L., Hensgens, C.M.H. (2001). Bovine hyperimmune whey protein concentrate with specific biological activity as a replacement ingredient. Innovations Food Techn. Dec.2001: 57-60.

Pharmaceutical  studies

Barker, R., Abrahamsson, B., Kruusmägi, M. (2014). Application and validation of an advanced gastro-intestinal in vitro model for evaluation of drug product performance in pharmaceutical development.  J. Pharm. Sci. 103 (11): 3704-3712. doi: 10.1002/jps.24177.

Blanquet,S.; Garrait,G.; Beyssac,E.; Perrier,C.; Denis,S.; Hebrard,G.; Alric,M. (2005). Effects of cryoprotectants on the viability and activity of freeze dried recombinant yeasts as novel oral drug delivery systems assessed by an artificial digestive system. Eur. J. Pharmaceutics and Biopharmaceutics, 61: 32-39.

Blanquet,S., Antonelli, R., Laforet, L., Denis, S., Marol-Bonnin, S. and Alric, M. (2004). Living recombinant Saccharomyces cerevisiae secreting proteins or peptides as a new drug delivery system in the gut. J. Biotechn. 110: 37-49.

Blanquet, S., Zeijdner, E., Beyssac, E., Meunier, J-P., Denis, S., Havenaar, R. and Alric, M. (2004). A dynamic artificial gastrointestinal system for studying the behavior of orally administered drug dosage forms under various physiological conditions. Pharmaceutical Research. 21 (4): 585-591.

Blanquet, S., Marol-Bonin, S., Beyssac, E., Pompon, D., Renaud, M. and Alric, M. (2001). The ‘biodrug’ concept: an innovative approach to therapy. Trends Biotechn. 19 (10): 393-400.

Bloomer, J.C., Ambery, C., Miller, B.E., Connolly, P., Garden, H., Henley, N., Hodnett, N., Keel, S., Kreindler, J.L., Lloyd, R.S., Matthews, W., Yonchuk, J., Lazaar, A.I. (2017). Identification and characterisation of a salt form of Danirixin with reduced pharmacokinetic variability in patient populations. Eur. J. Pharmaceut. Biopharmaceut. 117: 224-231.

Brito-de la Fuente, E., Secouard, S., Siegert, N., Perelló, F. P., & Gallegos, C. (2019). Determination of Dissolution Profile and Bioaccessibility of Ketosteril Using an Advanced Gastrointestinal In Vitro Model.

Brouwers, J., Anneveld, B., Goudappel, G.J, Duchateau, G., Annaert, P., Augustijns, P. and Zeijdner, E. (2011) Food-dependent disintegration of immediate release fosamprenavir tablets: In vitro evaluation using magnetic resonance imaging and a dynamic gastrointestinal system. Eur. J. Pharmaceutics Biopharmaceutics, 77: 313–319.

Butler, J., Hens, B., Vertzoni, M., Brouwers, J., Berben, P., Dressman, J., Andreas, C., Schaefer, K., Mann, J., McAllister, M., Jamei, M., Kostewicz, E., Kesisoglou, E., Langguth, P., Minekus, M., Müllertz, A., Schilderink, R., Koziolek, M., Jedamzik, P., Weitschies, W., Reppas C., Augustijns, P. (2019). In vitro models for the prediction of in vivo performance of oral dosage forms: Recent progress from partnership through the IMI OrBiTo collaboration. European Journal of Pharmaceutics and Biopharmaceutics, 136, 70-83

Chen, L., Hebrard, G., Beyssac, E., Denis, S. and Subirade, M. (2010). In vitro study of the release properties of soy-zein protein microspheres with a dynamic artificial digestive system. J. Agricultural Food Chem. 58: 9861–9867.

Culen, M., Rezacova, A., Jampilek, J., Dohnal, J. (2013).Designing a dynamic dissolution method: A review of instrumental options and corresponding physiology of stomach and small Intestine. J. Pharmaceutical Sci. 102 (9): 2995-3017. doi: 10.1002/jps.23494.

David, S.E., Strozyk, M.M. & Naylor, T.A. (2010). Using TNO gastro-Intestinal Model (TIM-1) to screen potential formulations for a poorly soluble development compound. J. Pharm. Pharmacol. 62: 1236-1237.

De Almeida, M.R.A., Bassani, A.S., Hamid, S., Banov, D., Phan, H. (2015). Investigation of the bioaccessibility of progesterone (micronized and non-micronized), using an in vitro model of the human gastrointestinal system. Intern. J. Appl. Sci. Techn. 5 (4): 1-7.

Dickinson, P.A., Abu Rmaileh, R., Ashworth, L., Barker, R.A., Burke, W.M., Patterson, C.M., Stainforth, N. and Yasin, M. (2012). An investigation into the utility of a multi-compartmental, dynamic, system of the upper gastrointestinal tract to support formulation development and establish bioequivalence of poorly soluble drugs. AAPS Journal 14 (2): 196-205.

Garbacz, G., Klein, S. (2012). Dissolution testing of oral modified-release dosage forms. J. Pharmacy Pharmacology 64: 944-958.

Gittings, S., Turnbull, N., Roberts, C.J., Gershkovich, P. (2014). Dissolution methodology for taste masked oral dosage forms. J. Controlled Release 173: 32-42.

Havenaar, R., Anneveld, B., Hanff, L.M., de Wildt, S.N., de Koning, B.A.E., Mooij, M.G., Lelieveld, J.P.A., Minekus, M. (2013). In vitro gastrointestinal model (TIM) with predictive power, even for infants and children? Internat. J. Pharm. Internat. J. Pharm. 457: 327-332.

Hens, B., Brouwers, J., Anneveld, B., Corsetti, M., Symillides, M., Vertzoni, M., Reppas, C., Turner, D.B., Augustijns, P. (2014). Gastrointestinal transfer: In vivo evaluation and implementation in in vitro and in silico predictive tools. Eur. J. Pharmaceut. Sci. 63: 233-242.

Hopgood, M., Reynolds, G., & Barker, R. (2018). Using Computational Fluid Dynamics to Compare Shear Rate and Turbulence in the TIM-Automated Gastric Compartment With USP Apparatus II. Journal of pharmaceutical sciences.

Kostewicz ES, Abrahamsson B, Brewster M, Brouwers, J., Butler, J., Carlert, S., Dickinson, P.A., Dressman, J., Holm, R., Klein, S., Mann, J., McAllister, M., Minekus, M., Muenster, U., Müllertz, A., Verwei, M., Vertzoni, M., Weitschies, W., Augustijns, P. (2014). In vitro models for the prediction of in vivo performance of oral dosage forms. Eur. J. Pharm. Sci. 57 (1): 342-366.

Koziolek, M., Garbacz, G., Neumann, M., Weitschies, W. (2013). Simulating the postprandial stomach: Biorelevant test methods for the estimation of intragastric drug dissolution. Mol. Pharmaceutics 10: 2211-2221.

Kubbinga, M., Augustijns, P., García, M. A., Heinen, C., Wortelboer, H. M., Verwei, M., & Langguth, P. (2019). The effect of chitosan on the bioaccessibility and intestinal permeability of acyclovir. European Journal of Pharmaceutics and Biopharmaceutics, 136, 147-155.

Lyng, E., Havenaar, R., Shastri, P., Hetsco, L., Vick, A., Sagartz, J. (2016). Increased bioavailability of celecoxib under fed versus fasted conditions is determined by post-prandial bile secretion as demonstrated in a dynamic gastrointestinal model. J. Drug Dev. Ind. Pharm. 42 b(8): 1334-1339.

McAllister, M. (2010). Dynamic Dissolution: A Step Closer to Predictive Dissolution Testing? Molecular Pharmaceutics 7 (5): 1374-1387.

Naylor, T.A., Connolly, P.C., Martini, L.G., Elder, D.P., Minekus, M., Havenaar, R. and Zeijdner, E. (2006). Use of a gastro-intestinal model and GastroplusTM for the prediction of in vivo performance. Industrial Pharmacy, Issue 12: 9-12. (also published in: Applied Therapeutic Research 6 (1): 15-19.

Rogers, M.A., Yan, Y.-F., Ben-Elazar, K., Lan, Y., Faig, J., Smith, K., Uhrich, K.E. (2014). Salicylic Acid (SA) Bioaccessibility from SA-Based Poly(anhydrideester). Biomacromolecules 15: 3406−3411.

Salmon, F., Verwei, M., Havenaar, R. (2008). When oral bioavailability becomes a problem. Eur. Biopharm. Rev.: 78-83.

Souliman, S., Beyssac, E., Cardot, J-M., Denis, S. and Alric, M. (2007). Investigation of the biopharmaceutical behavior of theophylline hydrophilic matrix tablets using USP methods and an artificial digestive system. Drug Development & Industrial Pharm. 33 (4): 475-483.

Souliman, S., Blanquet, S., Beysac, E. and Cardot,J-M. (2006). A level A in vitro/in vivo correlation in fasted and fed states using different methods: Applied to solid immediate release oral dosage from. Eur. J. Pharmaceutical Sci. 27: 72-79.

Tenjarla S, Romasanta V, Zeijdner E, Villa R, Moro L. (2007). Release of 5-aminosalicylate from an MMX mesalamine tablet during transit through a simulated gastrointestinal tract system. Adv Ther. 24 (4): 826-840.

Ting, Y., Jiang, Y., Lan, Y., Lin, Z., Rogers, M.A., Huang, Q. (2015). Viscoelastic emulsion improved the bioaccessibility and oral bioavailability of crystalline compound: A mechanistic study using in vitro and in vivo models. Mol. Pharmaceutics 12 (7): 2229-2236.

Van Den Abeele, J., Schilderink, R., Schneider, F., Mols, R., Minekus, M., Weitschies, W., Brouwers, J.,  Tack, J., Augustijns, P. (2017). Gastrointestinal and systemic disposition of diclofenac under fasted and fed state conditions supporting the evaluation of in vitro predictive tools. Mol. Pharmaceutics. doi: 10.1021/acs.molpharmaceut.7b00253.

Verwei, M., Minekus, M., Zeijdner, E., Schilderink, R., Havenaar, R. (2016). Evaluation of two dynamic in vitro models simulating fasted and fed state conditions in the upper gastrointestinal tract (TIM-1 and tiny-TIM) for investigating the bioaccessibility of pharmaceutical compounds from oral dosage forms. Int. J. Pharm. 498: 178-186.

Westerhout, J., van de Steeg, E., Grossouw, D., Zeijdner, E.E., Krul, C.A.M., Verwei, M., Wortelboer, H.M. (2014). A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur. J. Pharmac. Sci. 63: 167–177.

Zeijdner, E.E., Vlek, J. (2002). TIM: a versatile tool in studying paediatric pharmacokinetics. The Regulatory  Review  (The Journal of the British Institute of Regulatory Affairs) 5 (7):18-21.

Zeijdner, E.E. and Havenaar, R. (2000). The fate of orally administrated compounds during passage through the gastrointestinal tract simulated in a dynamic in vitro model (TIM). European Pharmaceutical Contractor, Febr. issue: 76-81.

Other nutrition studies

Björck, I.,  Ostman, E., Kristensen, M., Mateo Anson, N., Price, R., Haenen, G., Havenaar, R., Bach Knudsen, K-E., Frid, A., Mykkanen, H., Welch, R., and Riccardi, G. (2012). Cereal grains for nutrition and health benefits: Overview of results from in vitro, animal and human studies in the HEALTHGRAIN Project. Trends in Food Science & Technology 25 (2): 87-100.

Helou, C., Denis, S., Spatz, M., Marier, D., Rame, V., Alric, M., Tessier, F.J., Gadonna-Widehem, P. (2015).  Insights into bread melanoidins: Fate in the upper digestive tract and impact on the gut microbiota using in vitro systems. Food Func. 6 (12): 3737-3745.

Nguyen, T.T.P., Bhandari, B., Cichero, J., Prakash, S. (2015). A comprehensive review on in vitro digestion of infant formula. Food Res. Internat.

Bellmann, S., Krishnan, S., de Graaf, A., de Ligt, R. A., Pasman, W. J., Minekus, M., & Havenaar, R. (2019). Appetite ratings of foods are predictable with an in vitro advanced gastrointestinal model in combination with an in silico artificial neural network. Food Research International.

Publication lorem ipsum dolor

I am text block. Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo. I am text block. Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Micro-ecology and bioconversion studies in the large-intestinal

Aguirre, M., Venema, K. (2017). Challenges in simulating the human gut for understanding the role of the microbiota in obesity. Beneficial Microbes 8 (1): 31-53.

Aguirre, M., Bussolo de Souza, C., Venema, K. (2016). The gut microbiota from lean and obese subjects contribute differently to the fermentation of arabinogalactan and inulin. PLOS one, July: 1-18.

Aguirre, M., Eck, A., Koenen, M.E., Savelkoul, P.H.M., Budding, A.E., Venema, K. (2016). Diet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut model. Res. Microbiol. 167: 114-125.

Aguirre, M., Eck, A., Koenen, M.E., Savelkoul, P.H.M., Budding, A.E., Venema, K. (2015). Evaluation of an optimal preparation of human standardized fecal inocula for in vitro fermentation studies. J. Microbiol. Methods 117: 78-84.

Aguirre, M., Jonkers, D.M.A.E., Troost, F., Roeselers, G., Venema, K. (2014), In vitro characterization of the impact of different substrates on metabolite production, energy extraction and composition of gut microbiota from lean and obese subjects. Plos One Nov. 26: 1-23.

doi: 10.1371/journal.pone.0113864.

Aguirre, M., Ramiro-Garcia, J., Koenen, M.E., Venema, K. (2014). To pool or not to pool? Impact of the use of individual and pooled fecal samples for in vitro fermentation studies. J. Microbiol. Methods 107: 1-7.

Binsl, T.W., De Graaf, A.A., Venema, K., Heringa, J., Maathuis, M., De Waard, P., Van Beek, J.H.G.M. (2010). Measuring non-steady-state metabolic fluxes in starch-converting faecal microbiota in vitro. Beneficial Microbes, December 1 (4): 391-405.

Bothe M.K., Maathuis, A.J.H., Bellmann, S., van der Vossen, J.M.B.M., Berressem, D., Koehler, A., Schwejda-Guettes, S., Gaigg, B., Kuchinka-Koch, A., Stover, J.F. (2017). Dose-dependent prebiotic effect of lactulose in a computer-controlled in vitro model of the human large intestine. Nutrients 9: 767-781. doi:10.3390.nu9070767.

Bothe, M. K., Maathuis, A. J. H., Lange, K., Koenen, M. E., & van der Vossen, J. M. B. M. (2018). Lactulose Crystals and Liquid Both Show A Dose-Dependent Prebiotic Effect in a Computer-Controlled In Vitro Model of the Human Proximal Colon. J Food Tech Food Chem 1: 103 Abstract RESEARCH ARTICLE Open Access, 1(1).

Bussolo de Souza, C., Jonathan, M., Saad, S. M. I., Schols, H. A., & Venema, K. (2019). Degradation of fibres from fruit by-products allows selective modulation of the gut bacteria in an in vitro model of the proximal colon. Journal of Functional Foods, 57, 275-285.

Bussolo de Souza, C., Roeselers, G.,  Troost, F., Jonkers, D., Koenen, M.E., Venema, K. (2014). Prebiotic effects of cassava bagasse in TNO’s in vitro model of the colon in lean versus obese microbiota. J. Func. Food 11: 210-210. Corrigendum: J. Func. Foods 13 (2015): 391.

De Graaf, A.A., Maathuis, A., de Waard, P., Deutz, N.E.P.,  Dijkema, C., de Vos, W.M. and Venema, K. (2010). Profiling human gut bacterial metabolism and its kinetics using [U-13C]glucose and NMR.  NMR Biomed. 23: 2–12.

De Graaf, A.A., Venema, K. (2008). Gaining insight into microbial physiology in the large intestine: A special Role for stable isotopes. Advances Microbial Physiol. 53: 73-170.

Egert, M., de Graaf, A., Maathuis, A., de Waard, P., Plugge, C.M., Smidt, H., Deutz, N.E.P., Dijkema, C., de Vos, W.M., Venema, K. (2007). Identification of glucose-fermenting bacteria present in an in vitro model of the human intestine by RNA-stable isotope probing. FEMS Microb. Ecol. 60 (1): 126-135.

Faessler, C, Arrigoni, E., Venema, K., Brouns, F. and Amado, R. (2006). In vitro fermentability of differently digested resistant starch preparations. Mol. Nutr. Food Res. 50: 1220-1228.

Gao, K., Xu, A., Krul, C., Venema, K., Liu, Y., Niu, Y., Lu, J., Bensoussan, L., Seeram, N.P., Heber, D. and Henning, S.M. (2006). Of the major phenolic acids formed during human microbial fermentation of tea, citrus and soy flavonoids supplements, only 3,4-dihydroxyphenylacetic acid has antiproliferative activity. J. Nutr. 136: 52-57.

Hatanaka, M., Nakamura, Y., Maathuis, A.J.H., Venema, K., Murota, I., Yamamoto, Y. (2012). Influence of Bacillus subtilis C-3102 on microbiota in a dynamic in vitro model of the gastrointestinal tract simulating human conditions. Beneficial Microbes 3 (3): 229-236. ‘

Koenen, M.E., Cruz Rubio, J.M., Mueller, M., Venema, K. (2016). The effect of agave fructan products on the activity and composition of the microbiota determined in a dynamic in vitro model of the human proximal large intestine. J. Funct. Foods 22: 201-210.

Kong, H., Wang, M., Venema, K., Maathuis, A., van der Heijden, R., van der Greef, J., Xu, G., Hankemeier, T. (2009). Bioconversion of red ginseng saponins in the gastro-intestinal tract in vitro model studied by high-performance liquid chromatography–high resolution Fourier transform ion cyclotron resonance mass spectrometry.  J. Chromatography A 1216: 2195–2203.

Kortman, G.A.M., Dutilh, B.E., Maathuis, A.J.H., Engelke, U.F., Boekhorst, J., Keegan, K.P., Nielsen, F.G.G.,  Betley, J., Weir, J.C., Kingsbury, Z., Kluijtmans, L.A.J., Swinkels, D.W., Venema, K., Tjalsma, H. (2016). Microbial metabolism shifts towards an adverse profile with supplementary iron in the TIM-2 in vitro model of the human colon. Frontiers Microbiol. 6, art. 1481.

doi: 10.3389/fmicb.2015.01481.

Kovatcheva-Datchary, P., Egert, M., Maathuis, A., Rajilic-Stojanovic, M., de Graaf, A., Smidt, H., de Vos, W. and Venema, K. (2009). Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Environmental Microbiology, 11 (4): 914–926.

Krul, C., Humblot, C., Philippe, C., Vermeulen, M., Van Nuenen, M., Havenaar, R., Rabot, S. (2002). Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model. Carcinogenesis 23 (6): 1009-1016.

Lamers, R-J., Wessels, E., Van de Sandt, J., Venema, K., Schaafsma, G., Van der Greef, J. and Van Nesselrooij J. (2003). A pilot study to investigate effects of inulin on Caco-2 cells through in vitro metabolic fingerprinting. J. Nutr. 133: 3080-3084.

Maathuis, A.J.H., van den Heuvel, E.G.,  Schoterman, M.H.C., Venema, K. 2012. Galacto-Oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a 13C-labeling technique. J. Nutrition 142 (7): 1205-1212.

Maathuis, A., Hoffman, A., Evans, A., Sanders, L., Venema,  K. (2009). The Effect of the undigested fraction of maize products on the activity and composition of the microbiota determined in a dynamic in vitro model of the human proximal large intestine. J. American College of Nutrition, Vol. 28 (6): 657–666.

Martina, A., Felis, G. E., Corradi, M., Maffeis, C., Torriani, S., & Venema, K. (2019). Effects of functional pasta ingredients on different gut microbiota as revealed by TIM-2 in vitro model of the proximal colon. Beneficial microbes, 1-14.

Martinez, R.C.R., Cardarelli, H.R., Borst, W., Albrecht, S., Schols, H., Gutierrez, O.P., Maathuis., A.J.H., de Melo Franco, B.D.G., De Martinis, E.C.P., Zoetendal, E.G., Venema, K., Saad, S.M.I., Smidt, H. (2013).  Effect of galactooligosaccharides and Bifidobacterium animalis Bb-12 on growth of Lactobacillus amylovorus DSM 16698, microbial community structure, and metabolic production in an in vitro colonic model set up with human or pig microbiota. FEMS Microbiol. Ecol. 84: 110-123.

Motelica-Wagenaar, A.M., Nauta, A., van den Heuvel, E.G.H.M., Kleerebezem, R. (2014). Flux analysis of the human proximal colon using anaerobic digestion model 1. Anaerobe 28: 137-148.

Rajilic-Stojanovic, M., Maathuis, A., Heilig, H., Venema, K., De Vos, W., Smidt, H. (2010). Evaluating the microbial diversity of an in vitro model of the human large intestine by phylogenetic microarray analysis. Microbiology 156: 3270-3281.

Ramasamy, U.S., Venema, K., Schols, H.A., Gruppen, H. (2014). Effect of soluble and insoluble fibers within the in vitro fermentation of chicory root pulp by human gut bacteria. J. Agr. Food Chem. 62: 6794-6802.

Ramasamy, U.S., Venema, K., Gruppen, H., Schols, H.A. (2014). The fate of chicory root pulp polysaccharides during fermentation in the TNO in vitro model of the colon (TIM-2). Bioact. Carb. Dietary Fibre 4: 48-57.

Rehman, A., Heinsen, F.-A., Koenen, M.E., Venema, K., Knecht, H., Hellmig, S., Schreiber, S., Ott, S.J. 2012. Effects of probiotics and antibiotics on the intestinal homeostasis in a computer controlled model of the large intestine. MBC Microbiology 12, 47: 1-10.

Reimer, R.A.,  Maathuis, A.J.H., Venema, K., Lyon, M.R., Gahler, R.J., Wood, S. (2014). Effect of the novel polysaccharide PolyGlycopleX® on short-chain fatty acid production in a computer-controlled in vitro model of the human large intestine. Nutrients 6: 1115-1127. doi: 10-3390/nu6031115.

Rose, D.J., Venema, K., Keshavarzian, A. and Hamaker, B.R. (2010). Starch-entrapped microspheres show a beneficial fermentation profile and decrease in potentially harmful bacteria during in vitro fermentation in faecal microbiota obtained from patients with inflammatory bowel disease. British J. Nutr. 103: 1514-1524.

Sáyago-Ayerdi, S., Zamora-Gaska, V.M., Venema, K. (2018). Prebiotic effect of predigested mango peel on gut microbiota assessed in a dynamic in vitro model of the human colon (TIM-2). Food Res. Internat. ….  doi.org/10.1016/j.foodres.2017.12.024.

Tabernero, M., Venema, K., Maathuis, A.J.H., Saura-Calixto, F.D. (2011). Metabolite production during in vitro colonic fermentation of dietary fiber: Analysis and comparison of two European diets. J. Agricult. Food Chemistry 59 (16): 8968-8975.

Van den Abbeele, P., Venema, K., Van de Wiele, T., Verstraete, W., Possemiers, S. (2013). Different human gut models reveal the distinct fermentation patterns of arabinoxylan versus inulin. J. Agric. Food Chem. 61: 9819-9827.

Van der Vossen, J.M.B.M., Havekes, W.A.L.M., Koster, D.S., Ten Brink, B., Minekus, M., Havenaar, R., Huis in ’t Veld, J.H.J., Overeem, J., Hendriks, N., Hofstra, H. (1998). Development and application of in vitro intestinal tract model for safety evaluation of genetically modified foods. In: Food safety Evaluation of genetically modified foods as a basis for market introduction. Ministry of Economic Affairs, The Hague, The Netherlands

Van der Werf, M.J. and Venema, K. (2001). Bifidobacteria: genetic modification and the study of their role in the colon.  J. Agric. Food Chem. 49: 378-383.

Van Nuenen, M., de Ligt, R.A., Doornbos, R.P., Venema, K., Van der Woude, C.J., and Kuipers, E.J. (2005). The influence of microbial metabolites on human intestinal epithelial cells and macrophages in vitro. FEMS Immunol Med Microbiol 45 (2): 183-189.

Van Nuenen, H.M.C., Venema, K., Van der Woude, J.C.J. and Kuipers, E.J. (2004). The metabolic activity of fecal microbiota from healthy individuals and patients with inflammatory bowel disease. Digestive Disease and Sciences 49 (3): 485-491.

Van Nuenen, H.M.C., Meyer, P.D., Venema, K. (2003). The effect of various inulins and Clostridium difficile on the metabolic activity of the human colonic microbiota in vitro. Microbial Ecology in Health and Disease 15 (2-3): 137-144.

Venema K. 2015. Health Effects of Pro­ and Prebiotics: Utilization of Sophisticated In Vitro Tools. In: Beneficial Microorganisms in Medical and Health Applications; Series: Microbiology Monographs, Vol. 28; Chapter 1; pp. 1-18. M.-T. Liong (Ed.) 2015. ISBN: 978-3-319-23212-6.

Venema, K. (2014). In vitro assessment of the bioactivity of food oligosaccharides. In: Food Oligosaccharides: Production, Analysis and Bioactivity. Eds.: F.J. Moreno & M. Luz Sanz. John Wiley & Sons, Ltd.

Venema, K., Van den Abbeele, P. (2013). Experimental models of the gut microbiome. Best Practice & Research Clinical Gastroenterology 27: 115-126.

Venema, K., Vermunt, S.H.F. and Brink, E.J. (2005). D-Tagatose increases butyrate production by colonic microbiota in healthy men and women. Microbial Ecology Health Dis. 17: 47-57.

Venema, K. and Maathuis, A. (2003). A PCR-based method for identification of bifidobacteria from the human alimentary tract at the species level. FEMS Microbiol. Letters 224 (1): 143-149.

Venema, K. and Van de Sandt, H. (2003). Interaction between food components, intestinal microbiota and intestinal mucosa as a function of intestinal health. AgroFoods 14 (March/April): 62-66.

Venema, K., Van Nesselrooij, J., Lamers, R.-J. and Van de Sandt, J. (2003). Metabolic fingerprinting of Caco-2 cells. Effect of inulin and its fermentative metabolites. Nutrafoods 2 (1): 5-12.

Venema, K., Van Nuenen, H.M.C., Van den Heuvel, E.G., Pool, W., Van der Vossen, J.M.B.M. (2003).The effect of lactulose on the composition of the intestinal microbiota and short-chain fatty acid production in human volunteers and a computer-controlled model of the proximal large intestine. Microbial Ecology in Health and Disease, 15 (2-3): 94-105.

Venema, K., Van Nuenen, H.M.C., Smeets-Peeters, M.J.E., Minekus, M. and Havenaar, R. (2000). TNO’s in vitro large intestinal model: an excellent screening tool for functional food and pharmaceutical research. Ernährung/Nutrition 24 (12): 558-564.

Safety: Chemicals/Toxins (formation/binding) / Polluted soil / Nanoparticles

Avantaggiato, G., Havenaar, R. and Visconti, A. (2007). Assessment of the muli-mycotoxin binding efficacy of a carbon/aluminosilicate based product in an in vitro gastrointestinal model. J. Agricul. Food Chem. 55: 4810-4819.

Avantaggiato, G., Havenaar, R. and Visconti, A. (2004). Evaluation of the intestinal absorption of deoxynivalenol and nivalenol by an in vitro gastrointestinal model, and the binding efficacy of activated carbon and other adsorbent materials. Food Chemical Tox. 42 (5): 817-824.

Avantaggiato, G., Havenaar, R. and Visconti, A. (2003). Assessing the zearalenone binding activity of adsorbent materials during passage through a dynamic gastrointestinal model. Food Chemical Tox. 41: 1283-1290.

Blanquet S, Meunier, JP,  Minekus M, Marol-Bonnin S and Alric M (2003). Recombinant Saccharomyces cerevisiae expressing a P450 in artificial digestive systems: a model for biodetoxication in the human digestive environment. Appl. Env. Microbiol. 69: 2884-2892.

Bockting, G. Van der Valk, W. (1998). Gastrointestinale absorptie van lood uit verontreinigde grond. Bodem 2: 74-76.

Dominy, N.J.., Davoust, E. and  Minekus, M. (2004). Adaptive function of soil consumption: an in vitro study modeling the human stomach and small intestine. J. Exp. Biol.  207: 319-324.

Frank, N., Dubois, M., Scholz, G., Seefelder, W., Chuat, J-Y., Schilter, B. (2013). Application of gastrointestinal modelling to the study of the digestion and transformation of dietary glycidyl esters. Food Add. Containm. Part A, 30 (1): 69-79. doi: 10.1080/19440049.2012.732245.

González-Arias, C.A., Marín, S., Sanchis, V., Ramos, A.J. (2013). Mycotoxin bioaccessibility/ absorption assessment using in vitro digestion models: a review. World Mycotoxin J. 6 (2): 167-184.

Havenaar, R., de Jong, A., Koenen, M.J., van Bilsen, J., Janssen, A.M., Labij, E., Westerbeek, H.J.M. (2013). Digestibility of transglutaminase cross-linked caseinate versus native caseinate in an in vitro multi-compartmental model simulating young child and adult gastrointestinal conditions. J. Agric. Food Chem. (accepted).

Helou, C., Denis, S., Spatz, M., Marier, D., Rame, V., Alric, M., Tessier, F.J., Gadonna-Widehem, P. (2015). Insights into bread melanoidins: Fate in the upper digestive tract and impact on the gut microbiota using in vitro systems. Food Func. 6 (12): 3737-3745.

Kortman, G.A.M., Dutilh, B.E., Maathuis, A.J.H., Engelke, U.F., Boekhorst, J., Keegan, K.P., Nielsen, F.G.G.,  Betley, J., Weir, J.C., Kingsbury, Z., Kluijtmans, L.A.J., Swinkels, D.W., Venema, K., Tjalsma, H. (2016). Microbial metabolism shifts towards an adverse profile with supplementary iron in the TIM-2 in vitro model of the human colon. Frontiers Microbiol. 6, art. 1481.

doi: 10.3389/fmicb.2015.01481.

Krul, C.A.M., Zeilmaker, M., Schothorst, R. and Havenaar, R. (2004). Intragastric formation and modulation of N-nitrosodimethylamine in a dynamic in vitro gastrointestinal model under human physiological conditions. Food Chem. Toxicology 42: 51-63.

Krul, C.A.M., Luiten-Schuite, A., Baan, R., Verhagen, H., Mohn, G., Feron, V., and Havenaar, R. (2000). Application of a dynamic in vitro gastrointestinal tract model to study the availability of food mutagens, using heterocyclic aromatic amines as model compounds. Food and Chemical Toxicology (38): 783-792.

Larsson, K., Harrysson, H., Havenaar, R., Alminger, M., Undeland, I. (2016). Formation of malon-dialdehyde (MDA), 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE) in fish and fish oil during dynamic gastrointestinal in vitro digestion. Food Function 7: 1176-1187.

Larsson, K., Tullberg, C.,  Alminger, M., Havenaar, R., Undeland, I. (2016). Malondialdehyde and 4-hydroxy-2-hexenal are formed during dynamic gastrointestinal in vitro digestion of cod liver oils. Food Function 7: 3458-3467.

Lefebvre, D.E., Venema, K.,, Gombau, L., Valerio Jr, L.G., Raju, J., Genevieve S. Bondy, G.S., Bouwmeester, H., Singh, R.P., Clippinger, A.J., Collnot, E.-M., Mehta, R., Stone, V. (2014). Utility of models of the gastrointestinal tract for assessment of the digestion and absorption of engineered nanomaterials released from food matrices. Nanotoxicology (early on line 1-20.

doi: 10.3109/17435390.2014.948091.

Oomen, A.G.; Hack, A.; Minekus, M.; Zeijdner, E.; Cornelis, C.; Schoeters, G.; Verstraete, W.; Wiele, T. van de; Wragg, J.; Rompelberg, C.J.M.; Sips, A.J.A.M.; Wijnen, J.H. van. (2002).  Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science & Technology 36 (15): 3326-3334.

Roussel, C., Cordonnier, C., Galia, W., Le Goff, O., Thévenot, J., Chalancon, S., Alric, M., Thevenot-Sergentet, D., Leriche, F., Van de Wiele, T., Livrelli, V., Blanquet-Diot, S. (2016) Increased EHEC survival and virulence gene expression indicate an enhanced pathogenicity upon simulated pediatric gastrointestinal conditions. Pediatric Res. 80 (5): 734-743.

Torres-Escribano, S., Denis, S., Blanquet-Diot, S., Galatayud, M., Barrios, L., Velez, D, Alric, M., and Montoro, R. (2011). Comparison of a static and a dynamic in vitro model to estimate the bioaccessibility of As, Cd, Pb and Hg from food reference materials Fucus sp. (IAEA-140/TM) and lobster hepatopancreas (TORT-2). Sci. Total Environment 409: 604-611.

Van de Wiele, T., Oomen, A., Wragg, J., Cave, M., Minekus, M., Hack, A., Cornelis, C., Rompelberg, C., De Zwart, L., Klinck, B., Van Wijnen, J., Verstraete, W., and Sips, A. (2007). Comparison of five in vitro digestion models to in vivo experimental results: Lead bioaccessibility in the human gastrointestinal tract.  J. Experimental Sci. Health. Part A, 42: 1203-1211.

Westerhout, J., Bellmann, S., van Ee, R., Havenaar, R., Leeman, W., van de Steeg, E., Wortelboer, H.M. (2017). Prediction of oral absorption of nanoparticles from biorelevant matrices using a combination of two physiologically relevant in vitro models. J. Food Chem. Nanotechn. Open Access doi.org/10.17756/jfcn.2017-046.

Zeilmaker, M.J., Bakker, M.I., Schothorst, R.; Slob, W. (2010). Risk assessment of N-nitrosodimethyl-amine formed endogenously after fish-with-vegetable meals. Toxicological Sciences 116 (1): 323-335.

Could not find what you looked for?

Please contact us and we will help you.

Learn more!

Subscribe to
TIM knowledge